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p-Mechanics is a consistent physical theory which describes both quantum and clas-
sical mechanics simultaneously (V. V. Kisp-Mechanics as a physical theory. An
Introduction E-print:arXiv:quant-ph/0212101, 200@ternational Journal of Theoret-

ical Physics41(1), 63—77, 2002). We continue the developmenpahechanics by
introducing the concept of states. The set of coherent states we introduce allows us to
evaluate classical observables at any point of phase space and simultaneously to evaluate
guantum probability amplitudes. The example of the forced harmonic oscillator is used

to demonstrate these concepts.
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1. INTRODUCTION

In this paper we continue the developmentpamechanics (Kisil, 2002a,b).
p-Mechanics is a consistent physical theory which simultaneously describes both
guantum and classical mechanics. ltusesthe representation theory of the Heisenberg
group to show that both quantum and classical mechanics are derived from the same
source.

In this paper we introduce the concept of stateptmechanics. These are
defined in subsection 3.1 as functionals on @ealgebra of observables which
come in two equivalent forms: as elements of a Hilbert space and as kernels on
the Heisenberg group. Their time evolution is defined in subsection 3.2 and it is
shown thatthe Scbdinger and Heisenberg pictures are equivaleptimechanics.

In subsection 3.4 we introduce an overcomplete system of coherent states for
p-mechanics whose classical limit corresponds to the classical pure states. We
introduce two forms of functional since both have their own advantages. The
Hilbert space functionals are useful for deriving quantum properties of a system,
while the kernels have a clearer time evolution and classical limit.
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Finally in section 4 we apply this theory to the example of the forced oscillator.
It is shown that both the quantum and classical pictures are derived from the same
source. The important features of the classical case are provedpisieghanics
in subsections 4.2 and 4.3. Some of the features of the quantum case are proved
in subsection 4.5.

2. NOTATION AND PRELIMINARIES
2.1. Notation

| is the identityn by n matrix. A _
f isthe Fourier Transform of a functioh(i.e., f (x) = [z f(q) €29 dq).
We also useF to denote the Fourier Transform when this form is more convenient

(.80 Foxy (F(0 P)) = fuo (01, P21 @XPY dgdp.

2.2. Preliminaries

In this section we give a very brief overview of Kisil (2002a), which provides
an introduction tgp-mechanics. At the heart of this paper is the Heisenberg group
(Folland, 1989; Taylor, 1986).

Definition 2.1. The Heisenberg Group (denot&f]) is the set of all triples in
R x R" x R" under the law of multiplication

1
(s, %, ¥)x(s,X,y) = <s+ s + E(X Y =Xy, X+ X,y + y/) . (21)
The noncommutative convolution of two functioBs, B, defined orH" is
(B1* B2)(Q) = / Bi(h)Bz(h~*g)dh = / Bi(gh™")Bz(h) dh,
H" H"

wheredh is Haar measure oH", which is just the Lebesgue measui®dx dy
This can be extended to distributions in a natural way (Kirillov and Gvishiani,
1982). The Lie Algebr#,, can be realized by the left invariant vector fields

VS _ N9
2 9s

ay, | 2 0s’

- B_S 1= 3Xj
with the Heisenberg commutator relations
[Xi ' Yj] = 5”‘ S

The dual space to the Lie Algebtg is spanned by the left invariant first-order
differential forms. One of the principal ways of transfering betweé(") and
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L2(h) is by the Fourier transform oH" (Kirillov, 1999):
H(F) = /h p(expX)e ZXFr gx. (2.2)
For the Heisenberg group this ;1as the simple form
é(h.a, p) = /R $(s,x, y) e 2 Oer P ds dx dy

which is just the usual Fourier transform &3"1. Kirillov’s Method of Orbits

is of great importance in the-mechanical construction. For a discussion of the
Method of Orbits, see (Kirillov, 1999) or (Kirillov, 1976, chap. 15); its relation
to p-mechanics is described in Kisil (2002a). The Method of Orbits uses the
representatioAd* of H" onh?, known as the coadjoint representation. The exact
form of this representation fdil" is

Ad*(s, X, y) : (h,q, p) = (h,q+ hy, p—hx).

Note here thaty, x, y) € H" and f, g, p) € h:—this choice of letters will be used
throughout this paper. The orbitsAft* come in two forms, Euclidean spade$’
and singleton points

On={(h,q,p):fixed h#£0, and any q,peR";

Ow@p = (0,9, p):any q, peR"}.

We now introduceF2(Oy), which is a subspace df?(Op); we use this space
because it is irreducible under the representatidh

F2(On) = {fn(a, P) € L%(Oy) : D) fr =0, for 1< <nj,

where the operath,ﬂ onL?(Oy) is defined a§(3%i + i %) + 27(ci pj +i0;j).
The inner product oifF2(Oy,) is given by

4\" _
(v, V) r2(0p) = (H) fR Vi@, pva(@p)daqp (2.3)
The representatiopy, of H" on F2(0,) is provided by

) h
,Oh(s, X, y) . fh(q: p) s e—271l(h5+QX+DY) fh (q _ gy’ p+ Ex> , (24)

which is unitary with respect to the inner product defined in (2.3). The crucial
theorem which motivates the whole pfmechanics is as follows.

Theorem 2.1. The Stone-von Neumann Theorefil unitary irreducible repre-
sentations of the Heisenberg grolifi}, up to unitary equivalence, are either
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(i) of the formpp on F?(Oy) from Eq. (2.4) or
(i) for (q, p) € R* the commutative one-dimensional representations on
C = L*(O@,p)

pa.p (S X, Y)u = e @Iy, (2.4)
Proof: For a proof see, either Folland (1989) or Taylor (1986). O

We can extend this to the representation of a functiargnH" by

o) = [ Bl@(e)do

The representation of distributions is done in the natural way (Taylor, 1986, chap.
0, Eq. 3.4). The basic idea gf-mechanics is to choose particular functions or
distributions onH" which under the infinite dimensional representation will give
guantum mechanical observables while under the one-dimensional representation
will give classical mechanical observables. The observables are in fact operators on
L2(H") generated by convolutions of the chosen functions or distributions (more
general operators oh?(H") are in use for string-like versions gi-mechanics

but nothing has been published on this yet). Sihég") is a Hilbert space we

have that the set of observables i€&algebra (Arveson, 1976; Dixmier, 1977).

In doing this it is shown that both mechanics are derived from the same source.
The dynamics of a physical system evolves in fiienechanical picture using

the universal brackets (Kisil, 2002b); these are defined on two obsen@jles

B, by

{[B1, B2]} = A(B1 * B, — Bz % By),
where the operataA is defined on exponents as (recall tBat %)

angzrins jf h 0,

2.5
472, if h=0. (2:3)

SA =472, where Ae¥"s = {

and can be extended by linearity to the whole_é6{H"). A is the antiderivative
operator since it is the right inverse g,% It is proved in Kisil (2002b) that the
universal brackets satisfy both the Liebniz and Jacobi identities along with being
anticommutative. For @-mechanical system with ener@y, , these brackets give

us ap-dynamic equation for an observalie

dB
ot = B, Bx]}. (2.6)

Finally we state an equation from Kisil (2002a) which will be of use through-
out the paper. If we define the operator(g) for eachg € H" on L2(H")



Classical and Quantum Coherent States 1711

as
M(@): f(h) > f(gh) (2.7)

(i.e., the left regular representation) then we have the following relation:
M(9)F = Fon(9). (2.8)

We can alternatively write the convolution of two functions on the Heisenberg
group as

B« Ba(e) = [ Bu(hi () dh ). (2.9)

3. STATES AND THE PICTURES OF p-MECHANICS
3.1. States

In this section we introduce statespemechanics—these are positive linear
functionals on theC*-algebra (Arveson, 1976; Dixmier, 1977) pfmechanical
observables. For ea¢hs£ 0 (the quantum case) we give two equivalent forms of
states: the first form we give is as elements of a Hilbert space, the second is as
integration with an apropriate kernel. Hoe= O (the classical case) we have only
one form of states, that is as integration with an appropriate kernel.

Definition 3.1. The Hilbert spacéi, h € R\{0}, is the subset of functions on
H" defined by

Hn= [ f(x,y): Eff =0 1<j<n] (3.1)
where the operatoE, = Byj +icix)l +27(q 6671 +i &) (this is the Fourier
transform ofDﬂ]). The inner product oft, is defined as

4

Vi, Vo o = (H) /R a5, X, Y)Vs. x, ) dx ly (3.2)

Note in Eq. (3.2) there is no integration over #heariable since for any two
functionsvy = €S f1(x, y) andvy = €S f5(x, y) in Hp,

vava) = [ et ) Fot yxdy= [ i) Fat vy dy

and hence there is adependence. Itis important to note that eaghs invariant
under convolutions. Since the Fourier transform intertwines multiplication and
differentiation, we have

Hh = (7" Fy(f(p,a) @ f € FXO)). (3-3)
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‘Hy is mapped into another Hilbert Spagg by the Fourier transform. This
Hilbert Spacez,, is

In ={j(W.a, p) =8(h —h)f(q, p): f € F¥(On)},
wheres is the Dirac delta distribution. The inner product feth’, q, p) = §(h’ —
h)f1(a, p) andj2(h', g, p) = 8(h" — h) f2(q, p) in Zy is
o 4\" C ——
(Ju, J2)z, = (H) /2 ) j1(h';a, p)j2(h, g, p)dh'dg dp= (f1, f2)r2(0,).
R N+

We define a set of states for edehz 0, usingHy, (later in this section we will
define a set of states for# 0 which are defined using a kernel and a set of states
for h = 0 by a kernel).

Definition 3.2. If B is a p-mechanical observable and= H}, the p-mechanical
state corresponding tois

(B %V, V).

In Kisil (2002a) it is stated that i is a quantum mechanical observable (that
is an operator offr2(0y,)) the state corresponding foe F?(Oy) is

(A, T)r20y)-
We now introduce a magh, which maps vectors iff2(Oy) to vectors intHp
Sn(f(@, p) = " f(x, y). (3.4)

The following Theorem proves that the states corresponding to vetemsSy, f
give the same expectation values for observaBlaadpn(B) respectively. Before
proving this, we state a short Lemma which is needed to prove this Theorem.

Lemma 3.1. The mapSy : Hyn — Z; is an isometry.

Proof: Letvy, vo € Hp be of the form
Vi(S, X, ) = Shf1 = €M 11(x, y),
V2(S, X, y) = Sh f2 = lerihS ’fz(X, y), (35)

where f; and f, are in F2(Op,). Showing thatSy, is an isometry is equivalent to
proving the relation

(V1, Va) 3y, = (V1, V2) 73, (3.6)

where “ signifies the Fourier transform on the Heisenberg group definedin Eq. (2.2).
By an elementary calculation

(W, g, p) = 8(h" —h)fi(a, p),
U2, g, p) = 8(h" — h) f2(q, p). (3.7
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From the Plancheral formula d&?" and the polarization identity (Kirillov, 1976)
we have

<f11 f2>|_2(]R2“) = < fly f2> LZ(RZH).

Using this result, we get

a Vb, = [ | fulx, YTl V) dxdly
R n

= /R f1(@. p)fo(a. p)dadp

= fR s( —h) f4(, Ps(h —h)f,(a, pdi dgdp
Then by (3.7) this gives us
(V1, Vo)1, = (U1, V2) ;..

O

Theorem 3.1. For any observable B and anyw, € Hp, h € R\{0}, of the
form given in (3.5) we have the relationship

(B % V1, V)3, = (on(B) f1, f2)r20)- (3.8)

Proof: From Eg. (3.6) we have
(B Vi, Vo), = (B V1, Vo), (3.9)

where again " is the Fourier transform on the Heisenberg group as described in
Eqg. (2.2). Using (2.9), Eqg. (3.9) can be written as

(B Vi, Vi), = < [ B@i@dow, \72> . (3.10)
Th

Using (2.8), Eq. (3.10) becomes

(B Vi, Vi) = < / B(g)ph(g)dgvl,vz>
= /ph(B)(S(h’ —h)fi(q, p)s(h" —h) fo(q, p)dg dp di

- f on(B) f1(a, p) F2(, p)dq dp

Hence the result has been proved. O
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Taking vy = v7 in (3.8) shows that the states corresponding tand S, f
will give the same expectation values fg(B) andB respectively. If we tak® to
be a time development operator, we can get probability amplitudes between states

Vi 5& Vo.
We now show that each of these states can also be realized by an appropriate
kernel.

Theorem 3.2. Ifl(s, X, y) is defined to be the kernel

I(s, X, y) = (%) /Rzn v((s, x, Y)XS, X, YIIV((S, X, y)dx dy, (3.11)

then

(B *V, V), =/ B(s, x, Y)I(s, X, y)dsdx dy
Hn

Proof. Itis easily seen that

Bevi=(3) [, [, BEx e x e Ky

x V((s, X, y))dsdxdydkdy

—(5) [ Bt xmx ([ v x e x.y)

X v((s/,x’,y/))dx’dy> dsdxdy (3.12)

Note that there is no integration ovef by the definition of theH inner
product. O

Definition 3.3. We denote the set of kernels corresponding to the elemetig in
as’ly.

Now we introducep-mechanicalq, p) states which correspond to classical
states, they are again functionals on @tealgebra ofp-mechanical observables.
Pure states in classical mechanics evaluate observables at particular points of phase
space, they can be realized as kerd@s— a, p — b) for fixeda, b in phase space,
that is

/Rm F(q, p)d(g —a, p—b)dgdp= F(a, b). (3.13)

We now give thep-mechanical equivalent of pure classical states.



Classical and Quantum Coherent States 1715

Definition 3.4. pMechanical §, p) pure states are defined to be the set of func-
tionals,k?a’b), for fixeda, b € R™ which act on observables by

Koap(B(S X, ) = / B(s, x, y)e 1@ dxdy  (3.14)
Hn

Each @, p) pure statekg 4 ) is defined entirely by its kernép a )
|(0,a,b) = g Zi@x+by) (3.15)

By the definition ofp-mechanization (this is the map from classical observ-
ables top-mechanical observables which is the inverse Fourier transform fol-
lowed by the tensoring with a Dirac delta function in the s variable (Kisil, 2002a,
Section 3.3)

/ B(s, x, y) e "' @x+bYds dx dy= F(a, b), (3.16)
Hn

whereF is the classical observable correspondingtthence when we apply state
Ko,a,b) to @ p-mechanical observable, we get the value of its classical counterpart
at the point 4, b) of phase space. We introduce the ndépwhich maps classical
pure state kernels tp-mechanicald, p) pure state kernels

So(E(@, p)) = £(x, y).

This equation is almost identical to the relation in Eqg. (3.4). The kefpals) =
e271@x+py) gre the Fourier transforms of the delta functiéfgs— a, p — b) hence
pure @, p) states are just the image of pure classical states.

Mixed states, as used in statistical mechanics (Honerkamp, 1998), are linear
combinations of pure states. jamechanicsd, p) mixed states are defined in the
same way.

Definition 3.5. Define £y, to be the space of all linear combinations qf p)
pure state kernelg a1, that is the set of all kernels correspondingdp f) mixed
states.
The mapS, exhibits the same relations on mixed states as pure states because
of the linearity of the Fourier transform.

3.2. Time Evolution of States

We now go on to show howp-mechanical states evolve with time. We first
show how the elements @y, for all h € R evolve with time and that this time
evolution agrees with the time evolution pfobservables. In doing this we show
that for the particular case dfy the time evolution is the same as classical states
under the Liouville equation. Then we show how the elementgpévolve with
time and prove that they agree with the Swtinger picture of motion in quantum
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mechanics. Before we can do any of this, we need to give the definition of a
Hermitian convolution.

Definition 3.6. We call ap-mechanical observabi Hermitian if it corresponds
to a Hermitian convolution, that is for any functioiig, F, on the Heisenberg

group
/ (B * F1)(0)F2(@) dg = f F.(9)(B = F)(@) du.
H" H"

If a p-observableB is Hermitian thenB(g) = B(g—1), this is the result of
a trivial calculation. From now on we deno®{g-1) as B*. For our purposes
we just need to assume that the distribution or funct®ncorresponding to the
observable is real anBi(s, X, y) = B(=s, —X, —V).

Definition 3.7. If we have a system with enerd@y then an arbitary kernéle Ly,
h € R, evolves under the equation

dl
a; = B 111, 3.17)

We now show the time evolution of these kernels coincides with the time evolution
of p-mechanical observables.

Theorem 3.3. Iflis akernel evolving under Eq. (3.17) then for any observable B

d
&/Hn BIdg:/Hn{[B, Bu]}ldg.

Proof: This result can be verified by the direct calculation,

3/ B(s, x, Y)I(s, x, y) ds dx dy
dt Hn

:/ B(s, X, Y)A(By I —I % By)(s, X, y)ds dx dy

HH

= —/ AB(S, X, ¥)(Bu x| — 1 % By)(s, X, y)dsdx dy (3.18)
Hn

= [ AB Bu)Gs X, Y15 %, )
— (B * B)(s, X, Y)I(s, X, y))dsdx dy (3.19)

= an{[B, Bull(s, x, YI(s, X, y)ds dx dy
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At (3.18) we have used integration by parts while (3.19) follows siBgeis
Hermitian. O

If we take the representatiquy, p) of Eq. (3.17), we get the Liouville equation
(Honerkamp, 1998, Eq. 5.42) for a kerrﬂgll(l) moving in a system with energy
P(q.p(Bn). This only holds for elements iy and can be verified by a similar
calculation to Kisil (2002b, Proposition 3.5).

Now we show how the vectors i}, evolve with time. Initially we extend our
definition of 4, which was initially introduced in Eq. (2.5 can also be defined
as an operator on eaét,, h € R\{0}, A : Hy — Hj by

2
Av = mv.

The adjoint of4 is —.4 on eachH}, h € R\{0}.

Definition 3.8. If we have a system with energgy then an arbitrary vector

v € H; evolves under the equation
dv
a = .ABH *V = By % Av. (320)

The operation of left convolution preserves e&ghso this time evolution is
well defined. Equation (3.20) implies that if we haBg time-independent then
foranyv € Hj;

ABH

v(t;s, x, y) = eBHy(0;s, x, y),

whereeB+ is the exponential of the operator of applying the left convolution of
By and then applyingd.

Theorem 3.4. If we have a system with energy, Bassumed to be Hermitian)
then for any state & H,, and any observable B

%(B*v, V) = ({[B, BR]} * Vv, V).

Proof: The result follows from the direct calculation:

d d d
a(B>x<v(t),v(t)) = <B* av,v>—i-<B>x<v, mv>

= (BxABy *V, V) + (BxVv, ABy * V)

= (B*xABy *V,V) — (AB *x Vv, By % V) (3.21)
= (B*xABy *V,V) — (ABy *Vv, Bx V) (3.22)
= ({[B, Bu]} %V, V).
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Equation (3.21) follows sincd is skew-adjoint irf{y. At (3.22) we have used the
fact thatBy is Hermitian. a

This Theorem proves that the time evolution of statégjrtoincides with the
time evolution of observables as described in Eq. (2.6). We now give a corollary to
show that the time evolution gf-mechanical states iy, h € R\{0} is the same
as the time evolution of quantum states.

Corollary 3.1. If we have a system with energy, Bassumed to be Hermitian)
and an arbitrary state = Sy f = €¥"S{(x, y) (assuming h# 0) then for any
observable B;s, X, y)

d d
E(B *V(t), V(1)) g, = a(ﬂh(B)f(t): f(t) F2(0)-

Where% = %ph(BH)f (this is just the usual Schdinger equation).
Proof: From Theorem 3.4 we have
%(B *V,V) = ({[B, Bu]} * v, V)

= (A(B* By — By x B) % v, V)

= ((B % By — By * B) x Av, V)

= %((B* By — By * B) x v, v)

= %((B* By *Vv,V) — (Bx*xV, By xV)).

The last step follows sincBy is Hermitian. Using Eq. (3.8), the above equation
becomes,

d 1
—(BxVv,V) = —((on(B)on(Bu) f, f)rzon) — (on(B) f, on(Bn) f)r20)

dt ih
d
= a(ﬁh(B)f, f)r2(00)s
which completes the proof. O

Hence the time developmenth, for h # 0 gives the same time development
as inF2(Oy).

If 1(s, %, ¥) = (})" fin V(S X, YIS, X', y) (s, x, y))dXdy, then by
Theorems 3.3 and 3.4 we have that

d d
a(B*V,V>Hh = aAn Bldg (323)
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3.3. Eigenvalues and Eigenfunctions

In this section we introduce the concept of eigenvalues and eigenfunctions
for p-observables.

Theorem 3.5. For a p-observable B Ll(H”)Aand fi € F2(Op), pn(B) f1 =
Afy, if and only if for v(s, x, y) = S, f1 = €St (X, y) € Hp

(B *Vq, Vo) = A(Vy, V2)

holds for all v € Hj,.

Proof: If v, =e?""sf, (x,y) where f, is an arbitary element of2(Oy).
on(B) f1 = Af; implies that

(on(B) f1, f2) = A(f1, f2) = A(on(8(s)8(X)8(Y)) f1, f2) (3.24)
and by (3.8) this gives us
(B * V1, V2) = A(8(S)8(X)3(Y) * V1, V2) = A{V1, V2), (3.25)

which proves the argumentin one direction. Clearly Eq. (3.24) and (3.25) are equiv-
alent so the converse follows since (3.25) holding forgng H}, is equivalent to
(3.24) holding for anyf, € F2(O). o

3.4. Coherent States

In this section we introduce an overcomplete system of vectotg,iby a
representation dfl,,. The states which correspond to these vectors are an overcom-
plete system of coherent states for eacit 0. We then show that these vectors
correspond to a system of kernelsdp, whose limitis thed, p) pure state kernels.

Initially we need to introduce a vacuum vector’ty,. For this we take the
vector in’Hy, corresponding to the ground state of the Harmonic Oscillator with
classical Hamiltoniarg(mw?q? + 2 p?), wherew is the constant frequency and
m s the constant mass. The vectoRA(O},) corresponding to the ground state is
(Kisil, 2002b, Eq. 2.18)

fo(d, p) = exp(—zrn(wqu + (wm)-1p2)> , h>o.

The image of this undes, is

e2riNS F(£5) = eznihs/ ef%(ma)q2+(mw)*1p2)efzﬂi(QX+DY)dqdp

RZn
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Using the basic formula
/ expax? + bx + c)dx = (Z)é ex i +c wherea > 0, (3.26)
. p =13 p 2a ; , .
we get
2rihs hy" i wh (%2 2
Si(fo) = e F(fo) = = | expl2rihs— — ( — + y“owm | |,
2 2 \wm
which is the element df{y, corresponding to the ground state.
Definition 3.9. Define the vacuum vector iH;, as
h\" . zh [ x? )
V(h,0,0) = <§> exp(ths— - (ﬁ +vy wm)) ,
wherew andm are constants representing frequency and mass respectively.

Now we calculate the kerndiy,o,0), for the ground state by the relationship
(3.11) between kernels and vectors.

I(h,0,0)(S; X, ¥)

4\"
= (1) L, voool5 ~x, =), X, Yoo ofS. X, Y dy

_ hre-2rihs /Rzn exp(nih(x’y _xy)— JT_Zh ((x’w_mx)Z T om(y — y/)2>
wh [ (x)? , ,
- > < o om(y )2>> dx'dy

 hexp( —2rihs - TN (X2 f _
=h exp( 27ihs 5 (wm+a)my2))x Rznexp(nh( —

+ (iy + C:—m) X' — wm(y')? + (wmy — ix)y/>) dx'dy

h 2
= exp<—2nihs - % (:)(—m + a)myz))

mh . X \2 1 2
X exp(T (a)m (ly + w_m) + w—m(wmy— iX) >> (3.27)
at (3.27) we have used formula (3.26). By a simple calculation it can be shown
that
. Xx\2 o1 .\
wm (ly + w_m) + w—m(wmy— ix)=0,
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hence
h / x2

. b4
I(h,O,O) = exp(—ths - <w—m + a)myz>>
From Kisil (2002a) we introduce the observab¥andY, which are convolutions
with the following distributions
1 1
X = —8(5)8Wx)8(y) and Y = =—58(s)5(x)sV(y).
2ri 2mi

Under left and right convolutioiX andY generate left and right invariant vector
fields respectively. That is, B is a function or distribution oftl" then

1 ] y o 1 a y d
X¥*B=—|—-=2—]B BxX=——+4+=—]B
¥ 27i <ax 283) ¥ 27i <8x + 285>

1 a X 0 1 a X 0
Y«B=—|—+-—)B BxY=—|—--—|B
* 27i <8yJr 283> * 27i <8y 285)
Consider the representationIdf on#, by

LrabnV(s, X, y) = e Zsg 2 ACDXraYly (g x y),

whereeX is exponential of the operator of convolution ¥y The elements( 0, 0)
act trivally in the representatiog, thus the essential part of the operajpr )
is determined byd, b). Physically thee=27'"S part of the equation will just be a
phase factor which can be ignored. If we apply this representationrwitl® to
V(h,0,0y WE get a system of VeCtovs a,b),

h\" . —xh [/ x?
Vh,ab) (S, X, Y) = {(0,ab) <<§> exp(thsT (a)—m + yzwm>)> .

By (3.23) the vectors, 4 ) are equivalent to the kerndig a b
lhab) = eZHi(fb{{x,}}+a{{Y,}}|(h 0.0y
Since for any function or distributior, onH"
{[—bX +aY, B]} = —(ax+ by)B

we have

. . wh [ x?
Ihab) =exp( —27i@-x+b-y)—2rihs — — [ == + womy? ) .
2 \wm

Definition 3.10. For h e R\{0} and @, b) € R?" define the system of coherent
stateth,a,b) by

Kih,a,b)(B) = (B * V(h a by, V(n,ab) = / B(9)!(h,a,0)(9)dg
Hn
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Itis clear that the limit ab — 0 of the kernel$ a 1) will just be the kernels
l0,a,b)- This proves that the system of coherent states we have constructed have the
(9, p) pure statesk a ), from Eq. (3.14), as their limit as — 0, which is the
content of the next Theorem.

Theorem 3.6. If we have any p-observable B which is of the faits) f(x, y)
(that is, B is the p-mechanization of F as described in Kisil, 2002a, Section 3.3)
then

lim k(h, a, b)(B) = k(0,a, b)(B) = F(a, b)

We have useg-mechanics to rigorously prove, in a simpler way to previous
attempts (Hepp, 1974), the classical limit of coherent states.

3.5. The Interaction Picture

In the Schodinger picture, time evolution is governed by the states and their
equations‘jj—‘t’ = ABy * v% = {{Bn, |}}. Inthe Heisenberg picture, time evolution
is governed by the observables and the equ%%)& {{B, Bn}}. Intheinteraction
picture we divide the time dependence between the states and the observables. This
is suitable for systems with a Hamiltonian of the foBpn = By, + By, Where
By, is time-independent. The interaction picture has many uses in perturbation
theory (Kursunoglu, 1962).

Let a p-mechanical system have the HamiltoniBg = By, + By,, where
By, is time-independent. We first describe the interaction picture for elements of
Hn. Define exp(ABy,) as the operator ofi{, which is the exponential of the
operator of convolution by.ABy,. Now if B is an observable, let

B = expt.ABy,) B exp(—t.ABy,). (3.28)

If v € Hp, definev = (exp(=t.ABy,))v, then we get

%\7: %(exp(—tABHO)v)
= —ABy, * V + exp(~tABy,)(A(Bn, + Bn,) * V)
= —ABy, *V + ABy, * exp(—t.ABy,)V + exp(tABy,)ABu,v
= (exp(—t.ABy,).ABy, expt.ABg,)) (V). (3.29)
Now we describe the interaction picture for a state defined by a kerbDeffine

| = ellBro*ll| = expt.ABy,)l exp(-t.ABy,),
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then
dl — —
ai = —ABy, * | + expt ABpy){[Br, + Bh,, 1]} exptABy,) — | « ABy,

= eXptABy,){[Bh,, 11} exp(t.ABy,)
= expt.ABy,)(A(By, * exp(—t.ABy,)l expt.ABy,)

— exp(—tAB,)l exptABy,) * By,)) exp(-tABy,)
= {[exp.AB,) By, exp(—tABy,), 1]}.

This shows us how interaction states evolve with time, while the observables evolve
by (3.28). Note that if we tak8y, = By we have the Heisenberg picture, while

if we take By, = By we have the Sclodinger picture. The interaction picture

is very useful in studying the forced harmonic oscillator as will be shown in
subsection 4.4.

4. THE FORCED HARMONIC OSCILLATOR

The classical forced oscillator has been studied in great depth for a long
time—for a description of this, see #ahd Saleton (1998) and Goldstein (1980).
The quantum case has also been heavily researched (see for example Martinez,
1983; Merzbacher, 1970, Section 14.6). Of interest in the quantum case has been
the use of coherent states, this is described in Perelomov (1986). Here we extend
these approaches to give a unified quantum and classical solution of the problem
based on th@-mechanical approach.

4.1. The Unforced Harmonic Oscillator
Initially we give a brief overview of the unforced harmonic oscillator; we
give a slightly different account to the one given in Kisil (2002a).

Definition 4.11. We define the p-mechanical creation and annihilation operators
respectively as convolution by the following distributions

1
a = o (Mas($)D()5(y) — 18(8)5(x)sDy)), (4.1)
JT
1
a = F(mwa(s)5<1>(x)5(y) +18(3)8(x)sM(y)). (4.2)
T
The p-mechanical harmonic oscillator Hamiltonian has the equivalent form
1

Bn = %(Eﬁ *a~ +iwm?8W(s)5(x)8(y)).
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We denote thep-mechanical normalized eigenfunctions of the harmonic oscillator
by v, € Hn (note here that, o,0) = Vo); they have the form

1\ 2
vy = <m) (Aa)" x v,0)

= <n_1!)1/2 <2>ne2”'hs(x+ iomy)" exp(_zh <w— +y cum))

Itcan be shown by a trivial calculation that these creation and annihilation operators
raise and lower the eigenfunctions of the harmonic oscillator respectively. It is
important to note that these states are orthogonal undet{thener product
defined in Eq. (3.2).

4.2. The p-Mechanical Forced Oscillator: The Solution and Relation
to Classical Mechanics
The classical Hamiltonian for a Harmonic oscillator of frequesa@nd mass
m being forced by a real function of a real variab(#) is
1 1
H(t.q, p) = (mw 9? + ) — z(t)q.

Then for any observablé € C*®(R?") the dynamic equation is
df

— ={f,H
at {f, H}
p of 2m of
S . i 4.
mag aloJrz(t) (4.3)

Through the procedure op-mechanization as described in Kisil (2002a,
Section 3.3) we get thp-mechanical forced oscillator Hamiltonian to be

Bu(tis X, y) = 812 (mwza(s)zS@)(x)a(y) + —8(s)a(x)6‘2>(y))

2 s(9509s0y).
From Eg. (2.6) the dynamlc equation for an arbitary observBhik
dB _ x9B _ , 0B 20)yB 4.4)
dt  may @MY ye '

By substituting the following expression into Eq. (4.4), we see that it is a solution
of the p-dynamic equation

(1 [ .
B(t;s X, y) = exp(Zm (mfo Z(t) sin(wt) dt X(t)

_ / ') Cos@t)th(t)>> « B(0;s, X(t), Y(t)), (4.5
0
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where

X(t) = x cost) — mwy sin(wt),

Y(t) = miw sin(t) + y cosft).

Let F(a, p) = p@.p)(B(s X, ¥)) (i.e., F is the classical observable corresponding
to B under the relationship described in (Kisil (2002a, Section 3.3)).

F(ta, p) = /R B(t;s, x, y) €7 @X+PV ds dx dy

_ A exp(Zni (m—lw /0 ' 2(z) sin@r) dr X(t)

_ /ot (1) cos@r)dTY(t)>>

x exp(2ri(g.x + p.y))B(0;s, X(t), Y(t))dsdx dy

Making the change of variable= X(t) andv = Y (t), the above equation becomes

/RZM exp(Zni (m_];o /Ot Z(7) sin(wt)dru — /Ot z(7) cos@r)drv))

X exp(Zni (q - (U cospt) + vmw sin(wt))

+ p- (—% sint) + v cos@t)))) x B(0;s,u,v)dsdudv

= /]RZ”“ exp(Zniu : (q cospt) — m—’; sin(t) + m—lw /ot (z) Siﬂ(a)t)dt))

X exp(Zniv . (qma) sin(wt) + p coswt) — /t Z(t) cosgr) dr))
0

x B(0;s, u,v)dsdudv

_F <O;q cost) — m—i) sin(t) + % ft 2(r) sinwr) d7 ,
0
X QM sin(wt) + p cost) — /t Z(7) COS@I)dI) . (4.6)
0

This flow satisfies the classical dynamic Eq. (4.3) for the forced oscillator—this is
shown in Jos'and Saletan (1998).
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4.3. A Periodic Force and Resonance

In classical mechanics the forced oscillator is of particular interest if we
take the external force to t&t) = Zycos2t) (Jo€ and Saletan, 1998), that is
the oscillator is being driven by a harmonic force of constant frequéheyd
constant amplitud&,. By a simple calculation we have these resultstof o

/ot cos@t) sinwrt)dr = m[ﬁ cosft) cost)

+ w sin(Q2t) sin(wt) — Q] 4.7)
/: cos2t) cosr)dr = m[—ﬁ sin(Qt) cost)

+ w cosft) sin(wt)]. (4.8)

When these are substituted into (4.5), we see thptimechanics using a periodic
force thep-mechanical solution is the flow of the unforced oscillator multiplied
by an exponential term which is also periodic. However this exponential term
becomes infinitely large @& comes close ta. If we substitute (4.7) and (4.8)

into (4.6), we obtain a classical flow which is periodic but with a singularit2as
tends towards. These two effects show a correspondence between classical and
p-mechanics. The integrals have a different form wkeg »

! . _ 1—cos(2t)
/0 coswrt) sinwt)dr = " (4.9
/Ot cosrt) cosr)dr = % + % sin(2wt). (4.10)

Now when these new values are substituted intogimechanical solution (4.5),

the exponential term will expand without bound as t becomes large. When (4.9)
and (4.10) are substituted into (4.6), the classical flow will also expand without
bound—this is the effect of resonance.

4.4, The Interaction Picture of the Forced Oscillator

We now use the interaction picture to get a better description ofpthe
mechanical forced oscillator and also to demonstrate some of the quantum ef-
fects. The method we use is similar to the known method for the quantum sys-
tem (Merzbacher, 1970). The@mechanical forced oscillator Hamiltonian has the
equivalent form

1

By = 5 (@' xa” +ioms0(9)3(9)3(y)) — 2@ +a)
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(at anda~ are the distributions defined in Eqgs. (4.1) and (4.2)). We now pro-
ceed to solve the Forced Oscillator ptmechanics, using the interaction pic-
ture with By, = 5=(a@* * a~ +iom?s®(s)s(x)s(y)) andBy, = —z(t)(@™ +at).
From (3.29) the interaction states evolve under the equation

dv .
d_\tl - exp(%fl(a+ xa + Ia)m25(1)(5)5(x)5(y)))

x (—Az(t)@ +a™)) exp<—2t—mA(a+ xa + iwm25<1>(s)a(x)a(y))) 2
(4.11)

wherev = By and the exponentials are exponentials of the operators of con-
volution by the appropriate distributions.

Lemma4.1. We have the relations

{[a*, a1} = i wms(s)5(x)5(y) (4.12)
{[a",at xa]} = ioma" (4.13)
{[a",atxa]} =ioma . (4.14)

Proof: Equation (4.12) follows from simple properties of commutation for con-
volutions of Dirac delta functions. Equations (4.13) and (4.14) follow from (4.12)
and the fact tha], ]} are a derivation. O

Lemma4.2. If By, By are functions or distributions oH" such tha{[B;, B,]} =
y B, wherey is a constant then we have

eBAB, e B = &7 AB,. (4.15)

Here e**B1 is the exponential of the operator of convolutionbyB;.

Proof: Itis clear that
[ABy, ABy] = A{[By, By}
= )/.ABQ.

We have the operator identity (Merzbacher, 1970, Eq. 3.59€4f ;] = yC;
thene’©:C, e *1 = €7 C,. Equation (4.15) is this witkt; andC, the operators
AB; and AB; respectively. O
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The combination of Lemmas 4.1 and 4.2 simplifies Eq. (4.11) to
— = —Az(t)(@ € + ate )7

=—A(f(a + f(t)a")v,
where f (t) = z(t)é“' = z(t) cost) + iz(t) sin(t). A solution of this is

V(ty;s, X, y) = exp(A (/tz a f(r)+at f(r)dr

ty
4 om [ ¢ / ’ z(t)z(r") cos(r — t')))dt dr’)) U(tw; s, %, y).
th Jty

(4.16)

If we set

£(ty, t1) = wm /ttz [Z Z(7)z(z") cosg(r — t')dr dt’

t

n(tz, ) = | f(r)dr.
ta

Equation (4.16) becomes
Uty s, X, y) = At (ta,tr) eA(ﬁ(tz,tl)a++'l(tzyt1)a’)\7(tl; s, X, Y)
— At ts) gAlwmir(ty,t) X—m (tzytl)Y)\*](tl; S-X-Y),
wherengr(tz, t1) and n (t2, t1) are respectively the real and imaginary parts of

n(tz, t1). Hence if at timet; we start with a coherent staig, ), this will evolve
(in the interaction picture) to the state

DAV omir(tat) b (1), (4.17)

Theef WA part of formula (4.17) is just a phase factor and will be dealt with in the
next subsection. Observables in the interaction picture will evolve by Eq. (3.28),
whichisjustthe time evolution of observables for the unforced Harmonic oscillator.
From Kisil (2002b) this is

B(tz:s, X, y) = B (tl; s, X cos@(tz — 1)) + Moy sin@(t — 1)),
miw sin@(t, — ) + Y cos@(t, — tl))> .

Remark. The states remaining coherent means if wénlet 0 we can consider
the classical time evolution by evaluating the observables at different points (that
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is the coordinates given by the coherent state). The observables themselves are
moving, but just as they would under the unforced oscillator.

4.5. The Quantum Case
We define the time evolution operator (propagatd(}p, t;), of a system as
V(t2) = T(t2, t)v(ta),

wherev € Hj, is a state evolving in the system. In the interaction picture of the
Forced Harmonic Oscillator the time evolution operator is

T(to, 1) = eAt(tath) gAGI(t,th)a* 0tz t)a”)

TheS-matrix (scattering matrix) in the interaction picture is something of particular
interest (Merzbacher, 1970; Perelomov, 1986). pheechanicab-matrix in the
interaction picture is

S—= T(OO, —OO) — eSs»A eA(']sai+77$a+),

wheregs = wm [, [ z(t)z(t') cos(r — '))drdr’andns = [ z(r)€*dr. The
function&g is well defined since in all cases, the force can only act for a finite period
of time. Since now we are dealing with only the quantum case, we can assume that
h # 0 and hence

S= e% e-A('?sai""ﬁsaJr).

Thee™ is just a phase factor. We now introduce a well-known operator identity
which is a consequence of the Campbell-Baker—Hausdorff formula (Merzbacher,
1970).

Lemma4.3. If Ajand A are two operators which commute with their commu-
tator [A1, Az, then

ehtefe — gAitAot3lAL Al (4.18)
and
ehgfe g 3lAL A _ gPithe (4.19)
For a proof of this Lemma, see Merzbacher (1970, chap. 3). Using this Lemma,
we get
S — % pAnsat gAna g3l Ansa*, Aisa]

— e% eAnsa+ e.ArTSa’ e—%mslziwmA
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From this we can see if the oscillator begins in the oscillator stattee probability
amplitude of it being in thath oscillator stater,, is

2

e
(S V(g0 V) I* = <9A"Sa+ e e '™ v(0,0), Vn>

2

v Arae o lnsl?i o oor
— <eAnsa e.Ansa e 3 iomg V(0,0), Vn>

2

—T@wM|n; \2 + — A
= <eh e Ay ) vn>

2

—1|n: Izwm +
= <e ey g, Vn>

. 2
—xinsi?om o (Ansa™)! (Aar)n
B <e I i T (L (D

Using the orthonormality of the eigenstates, this becomes

2

_ ~2rips Pum (ns)™ e insiZem (1)

n! n!

n
eﬁh]isrx‘zwm (% T)s)
(nl) 1/2

This is the same probability as can be found using normal quantum methods (there
is a difference byr compared to some of the literature but this is due to a different
definition ofz(t) - see (Merzbacher, 1970, Eq. 14.107).
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