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p-Mechanics is a consistent physical theory which describes both quantum and clas-
sical mechanics simultaneously (V. V. Kisil,p-Mechanics as a physical theory. An
Introduction, E-print:arXiv:quant-ph/0212101, 2002;International Journal of Theoret-
ical Physics41(1), 63–77, 2002). We continue the development ofp-mechanics by
introducing the concept of states. The set of coherent states we introduce allows us to
evaluate classical observables at any point of phase space and simultaneously to evaluate
quantum probability amplitudes. The example of the forced harmonic oscillator is used
to demonstrate these concepts.
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1. INTRODUCTION

In this paper we continue the development ofp-mechanics (Kisil, 2002a,b).
p-Mechanics is a consistent physical theory which simultaneously describes both
quantum and classical mechanics. It uses the representation theory of the Heisenberg
group to show that both quantum and classical mechanics are derived from the same
source.

In this paper we introduce the concept of states top-mechanics. These are
defined in subsection 3.1 as functionals on theC∗-algebra of observables which
come in two equivalent forms: as elements of a Hilbert space and as kernels on
the Heisenberg group. Their time evolution is defined in subsection 3.2 and it is
shown that the Schr¨odinger and Heisenberg pictures are equivalent inp-mechanics.
In subsection 3.4 we introduce an overcomplete system of coherent states for
p-mechanics whose classical limit corresponds to the classical pure states. We
introduce two forms of functional since both have their own advantages. The
Hilbert space functionals are useful for deriving quantum properties of a system,
while the kernels have a clearer time evolution and classical limit.
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Finally in section 4 we apply this theory to the example of the forced oscillator.
It is shown that both the quantum and classical pictures are derived from the same
source. The important features of the classical case are proved usingp-mechanics
in subsections 4.2 and 4.3. Some of the features of the quantum case are proved
in subsection 4.5.

2. NOTATION AND PRELIMINARIES

2.1. Notation

I is the identityn by n matrix.
f̂ is the Fourier Transform of a functionf (i.e., f̂ (x) = ∫Rn f (q) e−2π iq·x dq).

We also useF to denote the Fourier Transform when this form is more convenient
(i.e.,F(x,y)( f (q, p)) = ∫Rn f (q, p) e−2π i (q·x+p·y) dq dp).

2.2. Preliminaries

In this section we give a very brief overview of Kisil (2002a), which provides
an introduction top-mechanics. At the heart of this paper is the Heisenberg group
(Folland, 1989; Taylor, 1986).

Definition 2.1. The Heisenberg Group (denotedHn) is the set of all triples in
R× Rn × Rn under the law of multiplication

(s, x, y) ∗ (s′, x′, y′) =
(

s+ s′ + 1

2
(x · y′ − x′ · y), x + x′, y+ y′

)
. (2.1)

The noncommutative convolution of two functionsB1, B2 defined onHn is

(B1 ∗ B2)(g) =
∫
Hn

B1(h)B2(h−1g) dh=
∫
Hn

B1(gh−1)B2(h) dh,

wheredh is Haar measure onHn, which is just the Lebesgue measureds dx dy.
This can be extended to distributions in a natural way (Kirillov and Gvishiani,
1982). The Lie Algebrahn can be realized by the left invariant vector fields

S= ∂

∂s
, X j = ∂

∂xj
− yi

2

∂

∂s
, Yi = ∂

∂yi
+ xj

2

∂

∂s
,

with the Heisenberg commutator relations

[Xi , Yj ] = δij S.

The dual space to the Lie Algebrah∗n is spanned by the left invariant first-order
differential forms. One of the principal ways of transfering betweenL2(Hn) and
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L2(h∗n) is by the Fourier transform onHn (Kirillov, 1999):

φ̂(F) =
∫
hn

φ(expX) e−2π i 〈X,F〉 d X. (2.2)

For the Heisenberg group this has the simple form

φ̂(h, q, p) =
∫
R2n+1

φ(s, x, y) e−2π i (hs+q·x+p·y) ds dx dy,

which is just the usual Fourier transform onR2n+1. Kirillov’s Method of Orbits
is of great importance in thep-mechanical construction. For a discussion of the
Method of Orbits, see (Kirillov, 1999) or (Kirillov, 1976, chap. 15); its relation
to p-mechanics is described in Kisil (2002a). The Method of Orbits uses the
representationAd∗ of Hn onh

∗
n, known as the coadjoint representation. The exact

form of this representation forHn is

Ad∗(s, x, y) : (h, q, p) 7→ (h, q + hy, p− hx).

Note here that (s, x, y) ∈ Hn and (h, q, p) ∈ h
∗
n—this choice of letters will be used

throughout this paper. The orbits ofAd∗ come in two forms, Euclidean spacesR2n

and singleton points

Oh = {(h, q, p) : fixed h 6= 0, and any q, p ∈ Rn};
O(q, p) = {(0, q, p) : any q, p ∈ Rn}.

We now introduceF2(Oh), which is a subspace ofL2(Oh); we use this space
because it is irreducible under the representationAd∗,

F2(Oh) = { fh(q, p) ∈ L2(Oh) : D j
h fh = 0, for 1≤ j ≤ n},

where the operatorD j
h on L2(Oh) is defined ash2( ∂

∂pj
+ ci i

∂
∂qj

)+ 2π (ci pj + iq j ).

The inner product onF2(Oh) is given by

〈v1, v2〉F2(Oh) =
(

4

h

)n ∫
R2n

v1(q, p)v2(q, p) dq qp. (2.3)

The representationρh of Hn on F2(Oh) is provided by

ρh(s, x, y) : fh(q, p) 7→ e−2π i (hs+qx+py) fh

(
q − h

2
y, p+ h

2
x

)
, (2.4)

which is unitary with respect to the inner product defined in (2.3). The crucial
theorem which motivates the whole ofp-mechanics is as follows.

Theorem 2.1. The Stone-von Neumann Theorem. All unitary irreducible repre-
sentations of the Heisenberg group,Hn, up to unitary equivalence, are either
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(i) of the formρh on F2(Oh) from Eq. (2.4) or
(ii) for (q , p) ∈ R2n the commutative one-dimensional representations on

C = L2(O(q, p))

ρ(q, p)(s, x, y)u = e−2π i (q·x+p·y)u. (2.4)

Proof: For a proof see, either Folland (1989) or Taylor (1986). ¤

We can extend this to the representation of a function,B, onHn by

ρ(B) =
∫
Hn

B(g)ρ(g) dg.

The representation of distributions is done in the natural way (Taylor, 1986, chap.
0, Eq. 3.4). The basic idea ofp-mechanics is to choose particular functions or
distributions onHn which under the infinite dimensional representation will give
quantum mechanical observables while under the one-dimensional representation
will give classical mechanical observables. The observables are in fact operators on
L2(Hn) generated by convolutions of the chosen functions or distributions (more
general operators onL2(Hn) are in use for string-like versions ofp-mechanics
but nothing has been published on this yet). SinceL2(Hn) is a Hilbert space we
have that the set of observables is aC∗-algebra (Arveson, 1976; Dixmier, 1977).
In doing this it is shown that both mechanics are derived from the same source.
The dynamics of a physical system evolves in thep-mechanical picture using
the universal brackets (Kisil, 2002b); these are defined on two observablesB1,
B2 by

{[B1, B2]} = A(B1 ∗ B2− B2 ∗ B1),

where the operatorA is defined on exponents as (recall thatS= ∂
∂s)

SA = 4π2I , where A e2π ihs =
{

2π
ih e2π ihs, if h 6= 0,

4π2s, if h = 0.
(2.5)

and can be extended by linearity to the whole ofL1(Hn). A is the antiderivative
operator since it is the right inverse to∂

∂s . It is proved in Kisil (2002b) that the
universal brackets satisfy both the Liebniz and Jacobi identities along with being
anticommutative. For ap-mechanical system with energyBH , these brackets give
us ap-dynamic equation for an observableB:

d B

dt
= {[B, BH ]}. (2.6)

Finally we state an equation from Kisil (2002a) which will be of use through-
out the paper. If we define the operatorλl (g) for each g ∈ Hn on L2(Hn)
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as

λl (g) : f (h) 7→ f (g−1h) (2.7)

(i.e., the left regular representation) then we have the following relation:

λl (g)F = Fρh(g). (2.8)

We can alternatively write the convolution of two functions on the Heisenberg
group as

B1 ∗ B2(g) =
∫
Hn

B1(h)λl (h) dhB2(g). (2.9)

3. STATES AND THE PICTURES OF p-MECHANICS

3.1. States

In this section we introduce states top-mechanics—these are positive linear
functionals on theC∗-algebra (Arveson, 1976; Dixmier, 1977) ofp-mechanical
observables. For eachh 6= 0 (the quantum case) we give two equivalent forms of
states: the first form we give is as elements of a Hilbert space, the second is as
integration with an apropriate kernel. Forh = 0 (the classical case) we have only
one form of states, that is as integration with an appropriate kernel.

Definition 3.1. The Hilbert spaceHh, h ∈ R\{0}, is the subset of functions on
Hn defined by

Hh =
{
e2π ihs f (x, y) : E j

h f = 0 1≤ j ≤ n
}

(3.1)

where the operatorE j
h = h

2(yj + ici x j )I + 2π (ci
∂
∂yj
+ i ∂

∂xj
) (this is the Fourier

transform ofD j
h). The inner product onHh is defined as

〈v1, v2〉Hn =
(

4

h

)n ∫
R2n

v1(s, x, y)v̄2(s, x, y) dx dy. (3.2)

Note in Eq. (3.2) there is no integration over thes variable since for any two
functionsv1 = e2π ihs f1(x, y) andv2 = e2π ihs f2(x, y) inHh,

〈v1, v2〉 =
∫
R2n

e2π ihse−2π ihs f1(x, y) f̄ 2(x, y) dx dy=
∫
R2n

f1(x, y) f̄ 2(x, y) dx dy,

and hence there is nos-dependence. It is important to note that eachHh is invariant
under convolutions. Since the Fourier transform intertwines multiplication and
differentiation, we have

Hh = {e2π ihsF(x,y)( f (p, q)) : f ∈ F2(O)}. (3.3)
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Hh is mapped into another Hilbert SpaceIh by the Fourier transform. This
Hilbert SpaceIh is

Ih = { j (h′, q, p) = δ(h′ − h) f (q, p) : f ∈ F2(Oh)},
whereδ is the Dirac delta distribution. The inner product forj1(h′, q, p) = δ(h′ −
h) f1(q, p) and j2(h′, q, p) = δ(h′ − h) f2(q, p) in Ih is

〈 j1, j2〉Ih =
(

4

h

)n ∫
R2n+1

j1(h′, q, p) j2(h′, q, p) dh′ dq dp= 〈 f1, f2〉F2(Oh).

We define a set of states for eachh 6= 0, usingHh (later in this section we will
define a set of states forh 6= 0 which are defined using a kernel and a set of states
for h = 0 by a kernel).

Definition 3.2. If B is a p-mechanical observable andv ∈ Hh the p-mechanical
state corresponding tov is

〈B ∗ v, v〉Hh .

In Kisil (2002a) it is stated that ifA is a quantum mechanical observable (that
is an operator onF2(Oh)) the state corresponding tof ∈ F2(Oh) is

〈A f, f 〉F2(Oh).

We now introduce a mapSh, which maps vectors inF2(Oh) to vectors inHh

Sh( f (q, p)) = e2π ihs f̂ (x, y). (3.4)

The following Theorem proves that the states corresponding to vectorsf andSh f
give the same expectation values for observablesB andρh(B) respectively. Before
proving this, we state a short Lemma which is needed to prove this Theorem.

Lemma 3.1. The mapSh : Hh → Ih is an isometry.

Proof: Let v1, v2 ∈ Hh be of the form

v1(s, x, y) = Sh f1 = e2π ihs f̂1(x, y),

v2(s, x, y) = Sh f2 = e2π ihs f̂2(x, y), (3.5)

where f1 and f2 are in F2(Oh). Showing thatSh is an isometry is equivalent to
proving the relation

〈v1, v2〉Hh = 〈v̂1, v̂2〉Ih , (3.6)

where ˆ signifies the Fourier transform on the Heisenberg group defined in Eq. (2.2).
By an elementary calculation

v̂1(h′, q, p) = δ(h′ − h) f1(q, p),

v̂2(h′, q, p) = δ(h′ − h) f2(q, p). (3.7)
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From the Plancheral formula onR2n and the polarization identity (Kirillov, 1976)
we have

〈 f1, f2〉L2(R2n) = 〈 f̂ 1, f̂ 2〉L2(R2n).

Using this result, we get

〈v1, v2〉Hh =
∫
R2n

f1(x, y) f2(x, y) dx dy

=
∫
R2n

f̂1(q, p) f̂ 2(q, p) dq dp

=
∫
R2n+1

δ(h′ − h) f̂ 1(q, p)δ(h′ − h) f̂ 2(q, p) dh′ dq dp.

Then by (3.7) this gives us

〈v1, v2〉Hh = 〈v̂1, v̂2〉Ih .

¤

Theorem 3.1. For any observable B and any v1, v2 ∈ Hh, h ∈ R\{0}, of the
form given in (3.5) we have the relationship

〈B ∗ v1, v2〉Hh = 〈ρh(B) f1, f2〉F2(Oh). (3.8)

Proof: From Eq. (3.6) we have

〈B ∗ v1, v2〉Hh = 〈B̂ ∗ v1, v̂2〉Ih (3.9)

where again ˆ is the Fourier transform on the Heisenberg group as described in
Eq. (2.2). Using (2.9), Eq. (3.9) can be written as

〈B ∗ v1, v2〉Hh =
〈∫

B(g)λ̂l (g) dgv1, v̂2

〉
Ih

. (3.10)

Using (2.8), Eq. (3.10) becomes

〈B ∗ v1, v2〉 =
〈∫

B(g)ρh(g) dgv̂1, v̂2

〉
=
∫
ρh(B)δ(h′ − h) f1(q, p)δ(h′ − h) f2(q, p) dq dp dh′

=
∫
ρh(B) f1(q, p) f̄ 2(q, p) dq dp.

Hence the result has been proved. ¤
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Taking v1 = v2 in (3.8) shows that the states corresponding tof andSh f
will give the same expectation values forρh(B) andB respectively. If we takeB to
be a time development operator, we can get probability amplitudes between states
v1 6= v2.

We now show that each of these states can also be realized by an appropriate
kernel.

Theorem 3.2. If l (s, x, y) is defined to be the kernel

l (s, x, y) =
(

4

h

)n ∫
R2n

v((s, x, y)−1(s′, x′, y′))v((s′, x′, y′) dx′ dy′, (3.11)

then

〈B ∗ v, v〉Hh =
∫
Hn

B(s, x, y)l (s, x, y) ds dx dy.

Proof: It is easily seen that

〈B ∗ v, v〉 =
(

4

h

)n ∫
R2n

∫
Hn

B((s, x, y))v((s, x, y)−1(s′, x′, y′))

× v((s′, x′, y′)) ds dx dy dx′ dy′

=
(

4

n

)n ∫
Hn

B((s, x, y))×
(∫

R2n
v((s, x, y)−1(s′, x′, y′))

× v((s′, x′, y′)) dx′ dy′
)

ds dx dy. (3.12)

Note that there is no integration overs′ by the definition of theHh inner
product. ¤

Definition 3.3. We denote the set of kernels corresponding to the elements inHh

asLh.
Now we introducep-mechanical (q, p) states which correspond to classical

states, they are again functionals on theC∗-algebra ofp-mechanical observables.
Pure states in classical mechanics evaluate observables at particular points of phase
space, they can be realized as kernelsδ(q − a, p− b) for fixeda, b in phase space,
that is ∫

R2n
F(q, p)δ(q − a, p− b) dq dp= F(a, b). (3.13)

We now give thep-mechanical equivalent of pure classical states.
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Definition 3.4. p-Mechanical (q, p) pure states are defined to be the set of func-
tionals,k0

(a,b), for fixeda, b ∈ R2n which act on observables by

k(0,a,b)(B(s, x, y)) =
∫
Hn

B(s, x, y) e−2π i (a.x+b.y) dx dy. (3.14)

Each (q, p) pure statek(0,a,b) is defined entirely by its kernell (0,a,b)

l (0,a,b) = e−2π i (a.x+b.y). (3.15)

By the definition ofp-mechanization (this is the map from classical observ-
ables top-mechanical observables which is the inverse Fourier transform fol-
lowed by the tensoring with a Dirac delta function in the s variable (Kisil, 2002a,
Section 3.3) ∫

Hn
B(s, x, y) e−2π i (a.x+b.y)ds dx dy= F(a, b), (3.16)

whereF is the classical observable corresponding toB, hence when we apply state
k(0,a,b) to a p-mechanical observable, we get the value of its classical counterpart
at the point (a, b) of phase space. We introduce the mapS0, which maps classical
pure state kernels top-mechanical (q, p) pure state kernels

SO(ξ (q, p)) = ξ̂ (x, y).

This equation is almost identical to the relation in Eq. (3.4). The kernelsl (0,a,b) =
e2π i (q.x+p.y) are the Fourier transforms of the delta functionsδ(q − a, p− b) hence
pure (q, p) states are just the image of pure classical states.

Mixed states, as used in statistical mechanics (Honerkamp, 1998), are linear
combinations of pure states. Inp-mechanics (q, p) mixed states are defined in the
same way.

Definition 3.5. DefineL0, to be the space of all linear combinations of (q, p)
pure state kernelsl (0,a,b), that is the set of all kernels corresponding to (q, p) mixed
states.

The mapS0 exhibits the same relations on mixed states as pure states because
of the linearity of the Fourier transform.

3.2. Time Evolution of States

We now go on to show howp-mechanical states evolve with time. We first
show how the elements ofLh, for all h ∈ R evolve with time and that this time
evolution agrees with the time evolution ofp-observables. In doing this we show
that for the particular case ofL0 the time evolution is the same as classical states
under the Liouville equation. Then we show how the elements ofHh evolve with
time and prove that they agree with the Schr¨odinger picture of motion in quantum
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mechanics. Before we can do any of this, we need to give the definition of a
Hermitian convolution.

Definition 3.6. We call ap-mechanical observableB Hermitian if it corresponds
to a Hermitian convolution, that is for any functionsF1, F2 on the Heisenberg
group ∫

Hn
(B ∗ F1)(g)F2(g) dg=

∫
Hn

F1(g)(B ∗ F2)(g) dg.

If a p-observableB is Hermitian thenB(g) = B(g−1), this is the result of
a trivial calculation. From now on we denoteB(g−1) as B∗. For our purposes
we just need to assume that the distribution or function,B, corresponding to the
observable is real andB(s, x, y) = B(−s,−x,−y).

Definition 3.7. If we have a system with energyBH then an arbitary kernell ∈ Lh,
h ∈ R, evolves under the equation

dl

dt
= {[BH , l ]}, (3.17)

We now show the time evolution of these kernels coincides with the time evolution
of p-mechanical observables.

Theorem 3.3. If l is a kernel evolving under Eq. (3.17) then for any observable B

d

dt

∫
Hn

Bl dg=
∫
Hn
{[B, BH ]} ldg.

Proof: This result can be verified by the direct calculation,

d

dt

∫
Hn

B(s, x, y)l (s, x, y) ds dx dy

=
∫
Hn

B(s, x, y)A(BH ∗ l − l ∗ BH )(s, x, y) ds dx dy

= −
∫
Hn
AB(s, x, y)(BH ∗ l − l ∗ BH )(s, x, y) ds dx dy (3.18)

=
∫
Hn
A((B ∗ BH )(s, x, y)l (s, x, y)

− (BH ∗ B)(s, x, y)l (s, x, y)) ds dx dy (3.19)

=
∫
Hn
{[B, BH ]}(s, x, y)l (s, x, y) ds dx dy.
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At (3.18) we have used integration by parts while (3.19) follows sinceBH is
Hermitian. ¤

If we take the representationρ(q, p) of Eq. (3.17), we get the Liouville equation
(Honerkamp, 1998, Eq. 5.42) for a kernelS−1

0 (l ) moving in a system with energy
ρ(q, p)(BH ). This only holds for elements inL0 and can be verified by a similar
calculation to Kisil (2002b, Proposition 3.5).

Now we show how the vectors inHh evolve with time. Initially we extend our
definition ofA, which was initially introduced in Eq. (2.5).A can also be defined
as an operator on eachHh, h ∈ R\{0},A : Hh 7→ Hh by

Av = 2π

ih
v.

The adjoint ofA is−A on eachHh, h ∈ R\{0}.

Definition 3.8. If we have a system with energyBH then an arbitrary vector
v ∈ Hh evolves under the equation

dv

dt
= ABH ∗ v = BH ∗Av. (3.20)

The operation of left convolution preserves eachHh so this time evolution is
well defined. Equation (3.20) implies that if we haveBH time-independent then
for anyv ∈ Hh

v(t ; s, x, y) = etAB Hv(0;s, x, y),

whereeABH is the exponential of the operator of applying the left convolution of
BH and then applyingA.

Theorem 3.4. If we have a system with energy BH (assumed to be Hermitian)
then for any state v∈ Hh and any observable B

d

dt
〈B ∗ v, v〉 = 〈{[B, BH ]} ∗ v, v〉.

Proof: The result follows from the direct calculation:

d

dt
〈B ∗ v(t), v(t)〉 =

〈
B ∗ d

dt
v, v

〉
+
〈
B ∗ v,

d

dt
v

〉
= 〈B ∗ABH ∗ v, v〉 + 〈B ∗ v,ABH ∗ v〉
= 〈B ∗ABH ∗ v, v〉 − 〈AB ∗ v, BH ∗ v〉 (3.21)

= 〈B ∗ABH ∗ v, v〉 − 〈ABH ∗ v, B ∗ v〉 (3.22)

= 〈{[B, BH ]} ∗ v, v〉.
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Equation (3.21) follows sinceA is skew-adjoint inHh. At (3.22) we have used the
fact thatBH is Hermitian. ¤

This Theorem proves that the time evolution of states inHh coincides with the
time evolution of observables as described in Eq. (2.6). We now give a corollary to
show that the time evolution ofp-mechanical states inHh, h ∈ R\{0} is the same
as the time evolution of quantum states.

Corollary 3.1. If we have a system with energy BH (assumed to be Hermitian)
and an arbitrary state v= Sh f = e2π ihs f̂ (x, y) (assuming h6= 0) then for any
observable B(t ; s, x, y)

d

dt
〈B ∗ v(t), v(t)〉Hh =

d

dt
〈ρh(B) f (t), f (t)〉F2(Oh).

Whered f
dt = 1

ihρh(BH ) f (this is just the usual Schrödinger equation).

Proof: From Theorem 3.4 we have
d

dt
〈B ∗ v, v〉 = 〈{[B, BH ]} ∗ v, v〉

= 〈A(B ∗ BH − BH ∗ B) ∗ v, v〉
= 〈(B ∗ BH − BH ∗ B) ∗Av, v〉

= 2π

ih
〈(B ∗ BH − BH ∗ B) ∗ v, v〉

= 1

i h
(〈B ∗ BH ∗ v, v〉 − 〈B ∗ v, BH ∗ v〉).

The last step follows sinceBH is Hermitian. Using Eq. (3.8), the above equation
becomes,

d

dt
〈B ∗ v, v〉 = 1

i h
(〈ρh(B)ρh(BH ) f, f 〉F2(Oh) − 〈ρh(B) f, ρh(BH ) f 〉F2(Oh))

= d

dt
〈ρh(B) f, f 〉F2(Oh),

which completes the proof. ¤

Hence the time development inHh for h 6= 0 gives the same time development
as inF2(Oh).

If l (s, x, y) = ( 4
h )n

∫
Hn v((s′, x′, y′))v((s′, x′, y′)−1(s, x, y))dx′dy′, then by

Theorems 3.3 and 3.4 we have that

d

dt
〈B ∗ v, v〉Hh =

d

dt

∫
Hn

Bldg. (3.23)
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3.3. Eigenvalues and Eigenfunctions

In this section we introduce the concept of eigenvalues and eigenfunctions
for p-observables.

Theorem 3.5. For a p-observable B∈ L1(Hn) and f1 ∈ F2(Oh), ρh(B) f1 =
λ f1, if and only if for v1(s, x, y) = Sh f1 = e2π ihs f̂ 1(x, y) ∈ Hh

〈B ∗ v1, v2〉 = λ〈v1, v2〉
holds for all v2 ∈ Hh.

Proof: If v2 = e2π ihs f̂ 2(x, y) where f2 is an arbitary element ofF2(Oh).
ρh(B) f1 = λ f1 implies that

〈ρh(B) f1, f2〉 = λ〈 f1, f2〉 = λ〈ρh(δ(s)δ(x)δ(y)) f1, f2〉 (3.24)

and by (3.8) this gives us

〈B ∗ v1, v2〉 = λ〈δ(s)δ(x)δ(y) ∗ v1, v2〉 = λ〈v1, v2〉, (3.25)

which proves the argument in one direction. Clearly Eq. (3.24) and (3.25) are equiv-
alent so the converse follows since (3.25) holding for anyv2 ∈ Hh is equivalent to
(3.24) holding for anyf2 ∈ F2(Oh). ¤

3.4. Coherent States

In this section we introduce an overcomplete system of vectors inHh by a
representation ofHn. The states which correspond to these vectors are an overcom-
plete system of coherent states for eachh 6= 0. We then show that these vectors
correspond to a system of kernels inLh, whose limit is the (q,p) pure state kernels.

Initially we need to introduce a vacuum vector inHh. For this we take the
vector inHh corresponding to the ground state of the Harmonic Oscillator with
classical Hamiltonian1

2(mω2q2+ 1
m p2), whereω is the constant frequency and

m is the constant mass. The vector inF2(Oh) corresponding to the ground state is
(Kisil, 2002b, Eq. 2.18)

f0(q, p) = exp

(
−2π

h
(ωmq2+ (ωm)−1 p2)

)
, h > 0.

The image of this underSh is

e2π ihsF( f0) = e2π ihs
∫
R2n

e−
2π
h (mωq2+(mω)−1 p2)e−2π i (qx+py)dqdp.
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Using the basic formula∫
R

exp(−ax2+ bx+ c)dx =
(π

a

) 1
2

exp

(
b2

4a
+ c

)
, wherea > 0, (3.26)

we get

Sh( f0) = e2π ihsF( f0) =
(

h

2

)n

exp

(
2π ihs− πh

2

(
x2

ωm
+ y2ωm

))
,

which is the element ofHh corresponding to the ground state.

Definition 3.9. Define the vacuum vector inHh as

v(h,0,0)=
(

h

2

)n

exp

(
2π ihs− πh

2

(
x2

ωm
+ y2ωm

))
,

whereω andm are constants representing frequency and mass respectively.

Now we calculate the kernel,l (h,0,0), for the ground state by the relationship
(3.11) between kernels and vectors.

l (h,0,0)(s, x, y)

=
(

4

h

)n∫
R2n

v(h,0,0)((−s,−x,−y)(s′, x′, y′))v(h,0,0)(s′, x′, y′)dx′dy′

= hne−2π ihs
∫
R2n

exp

(
π ih(x′y− xy′)− πh

2

(
(x′ − x)2

ωm
+ ωm(y− y′)2

)
− πh

2

(
(x′)2

ωm
+ ωm(y′)2

))
dx′dy′

= hn exp

(
−2π ihs− πh

2

(
x2

ωm
+ ωmy2

))
×
∫
R2n

exp

(
πh

(
− (x′)2

ωm

+
(
iy + x

ωm

)
x′ − ωm(y′)2+ (ωmy− i x)y′

))
dx′dy′

= exp

(
−2π ihs− πh

2

(
x2

ωm
+ ωmy2

))
× exp

(
πh

4

(
ωm

(
iy + x

ωm

)2
+ 1

ωm
(ωmy− i x)2

))
(3.27)

at (3.27) we have used formula (3.26). By a simple calculation it can be shown
that

ωm
(
iy + x

ωm

)2
+ 1

ωm
(ωmy− i x)2 = 0,
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hence

l (h,0,0)= exp

(
−2π ihs− πh

2

(
x2

ωm
+ ωmy2

))
From Kisil (2002a) we introduce the observablesX andY, which are convolutions
with the following distributions

X = 1

2π i
δ(s)δ(1)(x)δ(y) and Y = 1

2π i
δ(s)δ(x)δ(1)(y).

Under left and right convolutionX andY generate left and right invariant vector
fields respectively. That is, ifB is a function or distribution onHn then

X ∗ B = 1

2π i

(
∂

∂x
− y

2

∂

∂s

)
B B ∗ X = 1

2π i

(
∂

∂x
+ y

2

∂

∂s

)
B

Y ∗ B = 1

2π i

(
∂

∂y
+ x

2

∂

∂s

)
B B ∗ Y = 1

2π i

(
∂

∂y
− x

2

∂

∂s

)
B.

Consider the representation ofHn onHh by

ζ(r,a,b)v(s, x, y) = e−2π irse−2π iA(−bX+aY)v(s, x, y),

whereeX is exponential of the operator of convolution byX. The elements (r, 0, 0)
act trivally in the representation,ζ , thus the essential part of the operatorζ(r,a,b)

is determined by (a, b). Physically thee−2π irs part of the equation will just be a
phase factor which can be ignored. If we apply this representation withr = 0 to
v(h,0,0), we get a system of vectorsv(h,a,b),

v(h,a,b)(s, x, y) = ζ(o,a,b)

((
h

2

)n

exp

(
2π ihs

−πh

2

(
x2

ωm
+ y2ωm

)))
.

By (3.23) the vectorsv(h,a,b) are equivalent to the kernelsl (h,a,b)

l (h,a,b) = e2π i (−b{{X,}}+a{{Y,}}l (h,0,0).

Since for any function or distribution,B, onHn

{[−bX+ aY, B]} = −(ax+ by)B

we have

l (h,a,b) = exp

(
−2π i (a · x + b · y)− 2π ihs− πh

2

(
x2

ωm
+ ωmy2

))
.

Definition 3.10. For h ∈ R\{0} and (a, b) ∈ R2n define the system of coherent
statesk(h,a,b) by

k(h,a,b)(B) = 〈B ∗ v(h,a,b), v(h,a,b)〉 =
∫
Hn

B(g)l (h,a,b)(g)dg
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It is clear that the limit ash→ 0 of the kernelsl (h,a,b) will just be the kernels
l (0,a,b). This proves that the system of coherent states we have constructed have the
(q, p) pure states,k(0,a,b), from Eq. (3.14), as their limit ash→ 0, which is the
content of the next Theorem.

Theorem 3.6. If we have any p-observable B which is of the formδ(s) f̂ (x, y)
(that is, B is the p-mechanization of F as described in Kisil, 2002a, Section 3.3)
then

lim
h→0

k(h, a, b)(B) = k(0, a, b)(B) = F(a, b).

We have usedp-mechanics to rigorously prove, in a simpler way to previous
attempts (Hepp, 1974), the classical limit of coherent states.

3.5. The Interaction Picture

In the Schr¨odinger picture, time evolution is governed by the states and their
equationsdv

dt = ABH ∗ v dl
dt = {{BH , l }}. In the Heisenberg picture, time evolution

is governed by the observables and the equationd B
dt = {{B, BH }}. In the interaction

picture we divide the time dependence between the states and the observables. This
is suitable for systems with a Hamiltonian of the formBH = BH0 + BH1 where
BH0 is time-independent. The interaction picture has many uses in perturbation
theory (Kursunoglu, 1962).

Let a p-mechanical system have the HamiltonianBH = BH0 + BH1, where
BH0 is time-independent. We first describe the interaction picture for elements of
Hh. Define exp(t ABH0) as the operator onHh which is the exponential of the
operator of convolution bytABHo. Now if B is an observable, let

B̄ = exp(tABH0)B exp(−tABH0). (3.28)

If v ∈ Hh, definev̄ = (exp(−tABH0))v, then we get

d

dt
v̄ = d

dt
(exp(−tABH0)v)

= −ABH0 ∗ v̄ + exp(−tABH0)(A(BH0 + BH1) ∗ v)

= −ABH0 ∗ v̄ +ABH0 ∗ exp(−tABH0)v + exp(−tABH0)ABH1v

= (exp(−tABH0)ABH1 exp(tABH0))(v̄). (3.29)

Now we describe the interaction picture for a state defined by a kernell . Define

l̄ = e{[BH0 ,•]}l = exp(tABH0)l exp(−tABH0),
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then

dl̄

dt
= −ABH0 ∗ l̄ + exp(tABH0){[BH0 + BH1, l ]} exp(−tABH0)− l̄ ∗ABH0

= exp(tABH0){[BH1, l ]} exp(−tABH0)

= exp(tABH0)(A(BH1 ∗ exp(−tABH0)l̄ exp(tABH0)

− exp(−tABH0)l̄ exp(tABH0) ∗ BH1)) exp(−tABH0)

= {[exp(tABH0)BH1 exp(−tABH0), l̄ ]}.
This shows us how interaction states evolve with time, while the observables evolve
by (3.28). Note that if we takeBH0 = BH we have the Heisenberg picture, while
if we take BH1 = BH we have the Schr¨odinger picture. The interaction picture
is very useful in studying the forced harmonic oscillator as will be shown in
subsection 4.4.

4. THE FORCED HARMONIC OSCILLATOR

The classical forced oscillator has been studied in great depth for a long
time—for a description of this, see Jos´e and Saleton (1998) and Goldstein (1980).
The quantum case has also been heavily researched (see for example Martinez,
1983; Merzbacher, 1970, Section 14.6). Of interest in the quantum case has been
the use of coherent states, this is described in Perelomov (1986). Here we extend
these approaches to give a unified quantum and classical solution of the problem
based on thep-mechanical approach.

4.1. The Unforced Harmonic Oscillator

Initially we give a brief overview of the unforced harmonic oscillator; we
give a slightly different account to the one given in Kisil (2002a).

Definition 4.11. We define the p-mechanical creation and annihilation operators
respectively as convolution by the following distributions

a+ = 1

2π i
(mωδ(s)δ(1)(x)δ(y)− i δ(s)δ(x)δ(1)(y)), (4.1)

a− = 1

2π i
(mωδ(s)δ(1)(x)δ(y)+ i δ(s)δ(x)δ(1)(y)). (4.2)

The p-mechanical harmonic oscillator Hamiltonian has the equivalent form

BH = 1

2m
(a+ ∗ a− + iωm2δ(1)(s)δ(x)δ(y)).
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We denote thep-mechanical normalized eigenfunctions of the harmonic oscillator
by vn ∈ Hh (note here thatv(h,0,0)= v0); they have the form

vn =
(

1

n!

)1/2

(Aa+)n ∗ v(0,0)

=
(

1

n!

)1/2(h

2

)n

e2π ihs(x + iωmy)n exp

(−πh

2

(
x2

ωm
+ y2ωm

))
.

It can be shown by a trivial calculation that these creation and annihilation operators
raise and lower the eigenfunctions of the harmonic oscillator respectively. It is
important to note that these states are orthogonal under theHh inner product
defined in Eq. (3.2).

4.2. The p-Mechanical Forced Oscillator: The Solution and Relation
to Classical Mechanics

The classical Hamiltonian for a Harmonic oscillator of frequencyω and mass
m being forced by a real function of a real variablez(t) is

H (t, q, p) = 1

2

(
mω2q2+ 1

m
p2

)
− z(t)q.

Then for any observablef ∈ C∞(R2n) the dynamic equation is
d f

dt
= { f, H}

= p

m

∂ f

∂q
− ω2mq

∂ f

∂p
+ z(t)

∂ f

∂p
. (4.3)

Through the procedure ofp-mechanization as described in Kisil (2002a,
Section 3.3) we get thep-mechanical forced oscillator Hamiltonian to be

BH (t ; s, x, y) = − 1

8π2

(
mω2δ(s)δ(2)(x)δ(y)+ 1

m
δ(s)δ(x)δ(2)(y)

)
− z(t)

2π i
δ(s)δ(1)(x)δ(y).

From Eq. (2.6) the dynamic equation for an arbitary observableB is
d B

dt
= x

m

∂B

∂y
− ω2my

∂B

∂x
− z(t)yB. (4.4)

By substituting the following expression into Eq. (4.4), we see that it is a solution
of the p-dynamic equation

B(t ; s, x, y) = exp

(
2π i

(
1

mω

∫ t

0
z(τ ) sin(ωτ ) dτX(t)

−
∫ t

0
z(τ ) cos(ωτ ) dτY(t)

))
× B(0;s, X(t), Y(t)), (4.5)
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where

X(t) = x cos(ωt)−mωy sin(ωt),

Y(t) = x

mω
sin(ωt)+ y cos(ωt).

Let F(q, p) = ρ(q, p)(B(s, x, y)) (i.e., F is the classical observable corresponding
to B under the relationship described in (Kisil (2002a, Section 3.3)).

F(t ; q, p) =
∫
R2n+1

B(t ; s, x, y) e2π i (q.x+p.y) ds dx dy

=
∫
R2n+1

exp

(
2π i

(
1

mω

∫ t

0
z(τ ) sin(ωτ ) dτX(t)

−
∫ t

0
z(τ ) cos(ωτ ) dτY(t)

))
× exp(2π i (q.x + p.y))B(0;s, X(t), Y(t)) ds dx dy.

Making the change of variableu = X(t) andv = Y(t), the above equation becomes

∫
R2n+1

exp

(
2π i

(
1

mω

∫ t

0
z(τ ) sin(ωτ ) dτu−

∫ t

0
z(τ ) cos(ωτ ) dτv

))
× exp

(
2π i

(
q · (u cos(ωt)+ vmω sin(ωt))

+ p ·
(
− u

mω
sin(ωt)+ v cos(ωt)

)))
× B(0;s, u, v) ds du dv

=
∫
R2n+1

exp

(
2π iu ·

(
q cos(ωt)− p

mω
sin(ωt)+ 1

mω

∫ t

0
z(τ ) sin(ωτ ) dτ

))
× exp

(
2π iv ·

(
qmω sin(ωt)+ p cos(ωt)−

∫ t

0
z(τ ) cos(ωτ ) dτ

))
× B(0;s, u, v) ds du dv

= F

(
0;q cos(ωt)− p

mω
sin(ωt)+ 1

mω

∫ t

0
z(τ ) sin(ωτ ) dτ ,

× qmω sin(ωt)+ p cos(ωt)−
∫ t

0
z(τ ) cos(ωτ ) dτ

)
. (4.6)

This flow satisfies the classical dynamic Eq. (4.3) for the forced oscillator—this is
shown in Jos´e and Saletan (1998).
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4.3. A Periodic Force and Resonance

In classical mechanics the forced oscillator is of particular interest if we
take the external force to bez(t) = Z0 cos(Ät) (José and Saletan, 1998), that is
the oscillator is being driven by a harmonic force of constant frequencyÄ and
constant amplitudeZ0. By a simple calculation we have these results forÄ 6= ω∫ t

0
cos(Äτ ) sin(ωτ ) dτ = 2

(Ä2− ω2)
[Ä cos(Ät) cos(ωt)

+ω sin(Ät) sin(ωt)−Ä] (4.7)∫ t

0
cos(Äτ ) cos(ωτ ) dτ = 2

(Ä2− ω2)
[−Ä sin(Ät) cos(ωt)

+ω cos(Ät) sin(ωt)]. (4.8)

When these are substituted into (4.5), we see that inp-mechanics using a periodic
force thep-mechanical solution is the flow of the unforced oscillator multiplied
by an exponential term which is also periodic. However this exponential term
becomes infinitely large asÄ comes close toω. If we substitute (4.7) and (4.8)
into (4.6), we obtain a classical flow which is periodic but with a singularity asÄ

tends towardsω. These two effects show a correspondence between classical and
p-mechanics. The integrals have a different form whenÄ = ω∫ t

0
cos(ωτ ) sin(ωτ ) dτ = 1− cos(2ωt)

4ω
, (4.9)∫ t

0
cos(ωτ ) cos(ωτ ) dτ = t

2
+ 1

4ω
sin(2ωt). (4.10)

Now when these new values are substituted into thep-mechanical solution (4.5),
the exponential term will expand without bound as t becomes large. When (4.9)
and (4.10) are substituted into (4.6), the classical flow will also expand without
bound—this is the effect of resonance.

4.4. The Interaction Picture of the Forced Oscillator

We now use the interaction picture to get a better description of thep-
mechanical forced oscillator and also to demonstrate some of the quantum ef-
fects. The method we use is similar to the known method for the quantum sys-
tem (Merzbacher, 1970). Thep-mechanical forced oscillator Hamiltonian has the
equivalent form

BH = 1

2m
(a+ ∗ a− + iωm2δ(1)(s)δ(s)δ(y))− z(t)(a− + a+)
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(a+ anda− are the distributions defined in Eqs. (4.1) and (4.2)). We now pro-
ceed to solve the Forced Oscillator inp-mechanics, using the interaction pic-
ture withBH0 = 1

2m(a+ ∗ a− + iωm2δ(1)(s)δ(x)δ(y)) andBH1 = −z(t)(a− + a+).
From (3.29) the interaction states evolve under the equation

dṽ

dt
= exp

(
t

2m
A
(
a+ ∗ a− + iωm2δ(1)(s)δ(x)δ(y)

))
× (−Az(t)(a− + a+)) exp

(
− t

2m
A
(
a+ ∗ a− + iωm2δ(1)(s)δ(x)δ(y)

))
ṽ,

(4.11)

whereṽ = etAB0v and the exponentials are exponentials of the operators of con-
volution by the appropriate distributions.

Lemma 4.1. We have the relations

{[a+, a−]} = iωmδ(s)δ(x)δ(y) (4.12)

{[a+, a+ ∗ a−]} = iωma+ (4.13)

{[a−, a+ ∗ a−]} = iωma−. (4.14)

Proof: Equation (4.12) follows from simple properties of commutation for con-
volutions of Dirac delta functions. Equations (4.13) and (4.14) follow from (4.12)
and the fact that{[, ]} are a derivation. ¤

Lemma 4.2. If B1, B2 are functions or distributions onHn such that{[B1, B2]} =
γ B2 whereγ is a constant then we have

eAλB1AB2 e−AλB1 = eλγAB2. (4.15)

Here eAλB1 is the exponential of the operator of convolution byAλB1.

Proof: It is clear that

[AB1,AB2] = A{[B1, B2]}
= γAB2.

We have the operator identity (Merzbacher, 1970, Eq. 3.59): if [C1, C2] = γC2

theneλC1C2 e−λC1 = eλγC2. Equation (4.15) is this withC1 andC2 the operators
AB1 andAB2 respectively. ¤
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The combination of Lemmas 4.1 and 4.2 simplifies Eq. (4.11) to

dṽ

dt
= −Az(t)(a−eiωt + a+e−iωt )ṽ

= −A( f (t)a− + f (t)a+)ṽ,

where f (t) = z(t)eiωt = z(t) cos(ωt) + i z(t) sin(ωt). A solution of this is

ṽ(t2; s, x, y) = exp

(
A
(∫ t2

t1

a− f (τ )+ a+ f (τ )dτ

+ ωm
∫ t2

t1

∫ t2

t1

z(τ )z(τ ′) cos(ω(τ − τ ′))) dτ dτ ′
))

ṽ(t1; s, x, y).

(4.16)

If we set

ξ (t2, t1) = ωm
∫ t2

t1

∫ t2

t1

z(τ )z(τ ′) cos(ω(τ − τ ′) dτ dτ ′

η(t2, t1) =
∫ t2

t1

f (τ ) dτ.

Equation (4.16) becomes

ṽ(t2; s, x, y) = eAξ (t2,t1) eA(η̄(t2,t1)a++η(t2,t1)a−)ṽ(t1; s, x, y)

= eAξ (t2,t1) eA(ωmηR(t1,t1)X−ηI (t2,t1)Y)ṽ(t1; s · x · y),

whereηR(t2, t1) and ηI (t2, t1) are respectively the real and imaginary parts of
η(t2, t1). Hence if at timet1 we start with a coherent statev(a,b), this will evolve
(in the interaction picture) to the state

eξ (t2,t1)Av(a+ωmηR(t2,t1),b−ηI (t2)). (4.17)

Theeξ (t2,t1)A part of formula (4.17) is just a phase factor and will be dealt with in the
next subsection. Observables in the interaction picture will evolve by Eq. (3.28),
which is just the time evolution of observables for the unforced Harmonic oscillator.
From Kisil (2002b) this is

B(t2; s, x, y) = B
(
t1; s, x cos(ω(t2− t1))+mωy sin(ω(t2− t1)),

x

mω
sin(ω(t2− t1))+ y cos(ω(t2− t1))

)
.

Remark. The states remaining coherent means if we leth→ 0 we can consider
the classical time evolution by evaluating the observables at different points (that
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is the coordinates given by the coherent state). The observables themselves are
moving, but just as they would under the unforced oscillator.

4.5. The Quantum Case

We define the time evolution operator (propagator),T(t2, t1), of a system as

v(t2) = T(t2, t1)v(t1),

wherev ∈ Hh is a state evolving in the system. In the interaction picture of the
Forced Harmonic Oscillator the time evolution operator is

T(t2, t1) = eAξ (t2,t1) eA(η̄(t2,t1)a++η(t2,t1)a−).

TheS-matrix (scattering matrix) in the interaction picture is something of particular
interest (Merzbacher, 1970; Perelomov, 1986). Thep-mechanicalS-matrix in the
interaction picture is

S= T(∞,−∞) = eξsA eA(ηsa−+η̄sa+),

whereξs = ωm
∫
R
∫
R z(τ )z(τ ′) cos(ω(τ − τ ′))dτdτ ′ andηs =

∫
R z(τ )eiωτdτ . The

functionξs is well defined since in all cases, the force can only act for a finite period
of time. Since now we are dealing with only the quantum case, we can assume that
h 6= 0 and hence

S= e
2πξs

ih eA(ηsa−+η̄sa+).

Thee
2πξs

ih is just a phase factor. We now introduce a well-known operator identity
which is a consequence of the Campbell–Baker–Hausdorff formula (Merzbacher,
1970).

Lemma 4.3. If A1 and A2 are two operators which commute with their commu-
tator [A1, A2], then

eA1 eA2 = eA1+A2+ 1
2 [ A1, A2] , (4.18)

and

eA1 eA2 e−
1
2 [ A1, A2] = eA1+A2. (4.19)

For a proof of this Lemma, see Merzbacher (1970, chap. 3). Using this Lemma,
we get

S= e
2πξs

ih eAηsa+ eAη̄sa− e−
1
2 [Aηsa+,Aη̄sa−]

= e
2πξs

ih eAηsa+ eAη̄sa− e−
1
2 |ηs|2iωmA.
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From this we can see if the oscillator begins in the oscillator statev0 the probability
amplitude of it being in thenth oscillator statevn is

|〈S∗ v(0,0), vn〉|2 =
∣∣∣∣〈eAηsa+ eAη̄sa− e−

|ηs|2
2 iωmAv(0,0), vn

〉∣∣∣∣2
=
∣∣∣∣〈eAηsa+ eAη̄sa− e−

|ηs|2
2 iωm 2π

ih v(0,0), vn

〉∣∣∣∣2
=
∣∣∣∣〈e−πωm|ηs|2

h eAηsa+ eAη̄sa−v(0,0), vn

〉∣∣∣∣2
=
∣∣∣∣〈e−π |ηs|2ωm

h eAηsa+v(0,0), vn

〉∣∣∣∣2

=
∣∣∣∣∣
〈
e
−π |ηs|2ωm

h

∞∑
j=1

(Aηsa+) j

j !
v(0,0),

(Aa+)n

(n!)1/2
v(0,0)

〉∣∣∣∣∣
2

.

Using the orthonormality of the eigenstates, this becomes∣∣∣∣∣e−π |ηs|2ωm
ih

(
2π
ih ηs

)n
(n!)1/2

∣∣∣∣∣
2

= e
−2π |ηs|2ωm

h
(ηs)2n

n!
= e−

|ηs|2ωm
h

(ηs)2n

n!
.

This is the same probability as can be found using normal quantum methods (there
is a difference byh compared to some of the literature but this is due to a different
definition ofz(t) - see (Merzbacher, 1970, Eq. 14.107).
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José, J. V. and Saletan, E. J. (1998).Classical Dynamics, Cambridge University Press, Cambridge. A
contemporary approach.

Kirillov, A. A. (1976). Elements of the Theory of Representations, Springer-Verlag, Berlin. Translated
from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, Band 220.

Kirillov, A. A. (1999). Merits and demerits of the orbit method.Bulletin of American Mathematical
Society N.S.36(4), 433–488.

Kirillov, A. A. and Gvishiani, A. D. (1982).Theorems and Problems in Functional Analysis(Problem
Books in Mathematics), Springer-Verlag, New York. Translated from the Russian by Harold H.
McFaden.

Kisil, V. V. (2002a). p-Mechanics as a Physical Theory. An Introduction, E-print: arXiv:quant-
ph/0212101.

Kisil, V. V. (2002b). Quantum and classical brackets.International Journal of Theoretical Physics
41(1), 63–77. E-print: arXiv:math-ph/0007030.
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